

High-precision Time-to-Digital-Converter

PRODUCT DESCRIPTION

MS1030 is a high-precision TDC circuit. It has the characteristics of high accuracy, high stability, and high efficiency. It has measurement accuracy of 15ps and a measurement range from 500ns to 4ms @ 4MHZ. In the first wave mode, the offset range of the internal comparator is ± 127mV, and a comparison bias voltage of -128~124mV is also added; the measurement echo can be up to 8 echo pulses, built-in forward and reverse flow automatic measurement mode, and the value of 8 echo pulses and 8 echoes after the measurement is completed The sum of the wave pulses has independent result registers. This measurement mode not only improves the accuracy, but also greatly reduces the measurement power consumption.

VERSION: 1.2

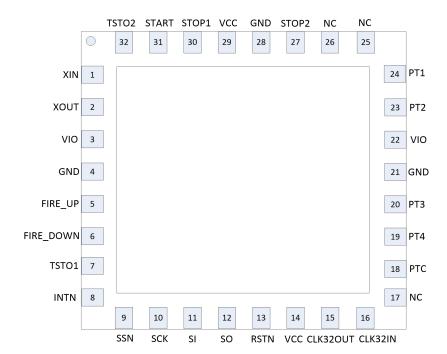
FEATURES

- Measurement Accuracy of 15ps
- Measurement Range from 500ns to 4ms @ 4MHZ
- 8 echo signals can be measured
- Through the StartTOFRestart command and automatically measure forward and reverse flow
- High-precision Pulse Width Detection Unit
- Built-in Stable Low-drift Precision Comparator
- Built-in Programmable Comparator Bias Voltage,
 Programming Voltage -128~124mV
- Built-in First-wave Detection Function with Programmable
 Bias Voltage up to ± 127mV
- Two pulse generators can generate 127 pulses
- Pulse generator sends pulse frequency: 62.5KHZ~2MHZ @ 4MHZ
- Pulse generator single output 48mA current
- Two Pulse Output Pins with Reverse Function

APPLICATIONS

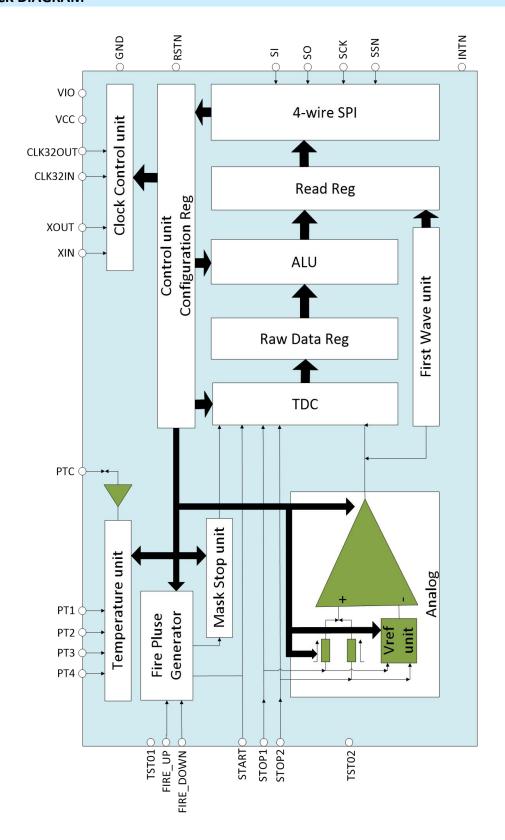
- Ultrasonic Water Meter
- Ultrasonic Heat Meter
- Ultrasonic Gas Meter
- Ultrasonic Flowmeter
- Ultrasonic Anemometer

PRODUCT SPECIFICATION


Part Number	Package	Marking
MS1030	QFN32	MS1030

QFN32

PIN CONFIGURATION


PIN DESCRIPTION

Pin	Name	I/O	Buffer Type	Description	Unused
1	XIN	I		High-speed crystal Input	GND
2	XOUT	0		High-speed crystal Output	
3	VIO			I/O Supply Voltage	
4	GND			Ground	
5	FIRE_UP	0	48 mA		
6	FIRE_DOWN	0	48 mA	Fire Pulse Generator Output 2	
7	TSTO1	0		Test Output Pin 1	
8	INTN	0	4 mA	Interrupt Fag	
9	SSN	I		Slave Select	GND
10	SCK	I		Clock Serial Interface	GND
11	SI	I		Data Input Serial Interface	GND
12	SO	0	4 mA Tristate	Data Output Serial Interface	
13	RSTN	I		Reset Input, Low Active	VIO
14	VCC			Core Supply Voltage	
15	CLK32OUT	0		Output 32 KHz Clock Generator	
16	CLK32IN	I		Input 32 KHz Clock Generator	GND
17	NC				
40	PTC			Temperature Measurement Capacitor	
18				Terminal	
19	PT4	0	>96mA	Port 4 Temperature Measurement	
20	PT3	0	Open Drain	Port 3 Temperature Measurement	
21	GND			Ground	
22	VIO			I/O Supply Voltage	
23	PT2	0	>96mA	Port 2 Temperature Measurement	
24	PT1	0	Open Drain	Port 1 Temperature Measurement	
25	NC				
26	NC				
27	STOP2	I		Stop Input 2	GND
28	GND			Ground	
29	VCC			Core Supply Voltage	
30	STOP1	I		Stop Input 1	GND
31	START	I		Start Input	GND
32	TSTO2	0		Test Output Pin 2	

Note: If the user does not use the above pins, please set the unused pins according to the connection in the "Unused" column above.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Any exceeding absolute maximum rating application causes permanent damage to device. Because long-time absolute operation state affects device reliability. Absolute ratings just conclude from a series of extreme tests. It doesn't represent chip can operate normally in these extreme conditions.

Parameter	Symbol	Range	Unit
Core Supply Voltage	Vcc	-0.3 ~ 4	V
I/O Supply Voltage	Vio	-0.3 ~ 4	V
Input Voltage	Vin	-0.5 ∼ Vcc+0.5	V
Storage Temperature	Tstg	-55 ~ 1 50	°C
Junction Temperature	Tj	125	°C
ESD Rating (HBM)	ESD	>4	KV

ELECTRICAL CHARACTERISTICS(3.3V)

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Core Supply Voltage*	Vcc	Vcc= Vio	2.5		3.6	V
I/O Supply Voltage	Vio		2.5		3.6	V
Normal Input Rising Time	tri				200	ns
Normal input falling time	tfa				200	ns
Schmitt Trigger Rising Time	tri				5	ms
Schmitt Trigger Falling Time	tfa				5	ms
Ambient Temperature	Та	Tj must not exceed 125°C	-40		125	°C
Thermal Resistance	Rth(j-)	Junction-ambient		28		K/W

^{*}Including the oscillator pins XIN, XOUT, Clk32IN, Clk32OUT

DC Characteristics

(Vio = Vcc = 3.0 V, Tj = -40 To $+85^{\circ}$ C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Current 32kHz	132	I _{CC} +I _{IO} , Only 32kHz		4		μΑ
	Ihs	Vcc=Vio= 3.6V		200		μΑ
Current 4 Mhz		Vcc=Vio=3.0V		130		μΑ
		Off		<1		μΑ
Current Time Measuring Unit	Itmu	Only Time Measurement		2		mA
Quiescent Current	Iddq	All Clock Off, 85°C		<0.1		μΑ
Operating Current	lo	TOF-UP/DOWN, 1/s,		1.1		
		PT1000,1/30s		0.15		μΑ
Current Time Measuring Unit	IT	Every 30 Seconds		0.085		μΑ
Current of Analog Part	lana	Only Analog Part		0.8		mA
Current of Complete Flow	Itotal	Time is measured twice per second.		2.3		μΑ
		Temperature is measured				
		every 30 seconds.				
High Level Output Voltage	Voh	Ioh= tbd mA Vio=Min.	0.8Vio			V
Low Level Output Voltage	Vol	Iol=tbd mA, Vio=Min			0.2Vio	V
High Level Input Voltage	Vih	LVTTL, Vio = Max.	0.7Vio			V
Low Level Input Voltage	Vil	LVTTL, Vio = Min.			0.3Vio	V
High Level Schmitt Trigger Voltage	Vth		0.7Vio			V
Low Level Schmitt Trigger Voltage	Vtl				0.3Vio	V
Schmitt Trigger Hysteresis	Vh			0.28		V

Terminal Capacitance

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Digital Input	Cin	Measured @ Vcc = Vio,		7		
Digital Output	Со	f = 1 MHz, T=25°C				pF
Bidirectional	Cio			9		
PT Ports				t.b.d.		
Analog Input				t.b.d.		

Analog Frontend

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Comparator Input Offset Voltage (Chopper Stabilized)				1	2	mV
Switch-on Resistance of Analog Switches at STOP1/STOP2 Inputs	Rdson(AS)			300		Ohm
Switch-on Resistance of FIRE_UP,FIRE_DOWN Output Buffers	Rdson(FIRE)	Symmetrical Outputs, Rdson (HIGH)= Rdson (LOW)		4		Ohm
Output Current FIRE_UP, FIRE_DOWN Output Buffers	IFIRE			48		mA
Analog Input Voltage	Vana		50	500	VCCx2/3	MVpp
STOP Bias Voltage				VCCx1/3		V
Comparator Transmission Delay	Tpd				100	ns

Time Measuring Unit

(Vio=Vcc=3.0V,Tj=25°C)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Time Measurement Accuracy	Tacc	VCC=3.0V		15		ps
Measurement Resolution	Tres	VCC=3.0V		3.8		ps
Measuring Range*	tm	VCC=3.0V	0.0005		4	ms
Integral Non-linearity	INL	VCC=3.0V		<0.1		LSB
Differential Non-linearity	DNL	VCC=3.0V		<0.1		LSB

^{*@4}MHZ

Temperature Measuring Unit*

Paramet	er	Cond	Unit	
Sensor		PT500	PT1000	
Resolution RMS		17.5	17.5	Bit
SNR		105	105	dB
Absolute Gain		0.9912	0.9931	
Absolute Gain	3.6V	0.9923	0.9962	
vs.Vio	3.0V	0.9912	0.9960	
	2.5V	0.9895	0.9956	
Gain Drift vs.Vio		0.25	0.23	%/V
max. Gain Error@	d Θ =100 K	0.05%	0.05%	
Gain-Drift vs. Tem	р	0.022	0.017	%/10K
Gain-Drift vs. Vio				%/V
Initial Zero Offset		<20	<10	mK
Offset Drift vs. Temp		<0.05	<0.03	mK/°C
PSRR			>100	dB

^{*} All values measured at Vio = Vcc = 3.0 V, Cload = 100 nF for PT1000 and 200 nF for PT500 (C0G-type).

TIMING

At Vcc = 3.0 V \pm 0.3 V, ambient temperature -40°C to +85°C unless otherwise specifed.

Oscillator

Parameter	Symbol	Min	Тур	Max	Unit
32 KHz Reference Oscillator	Clk32		32.768		kHz
32 KHz Oscillator Start-up Time after Power-up	t32st		3		S
High-speed Reference Oscillator	ClkHS	1	4	8	MHz
Oscillator Start-up Time with Ceramic Resonator	toszst		100		μs
Oscillator Start-up Time with Crystal Oscillator	toszst		1		ms

Serial Interface

		Ту		
Parameter	Symbol	Vio=2.5V	Vio=3.3V	Unit
Serial Clock Frequency	fclk	15	20	MHz
Serial Clock, Pulse Width High	tpwh	30	25	ns
Serial Clock, Pulse Width Low	tpwl	30	25	ns
SSN Enable to Valid Latch Clock	tsussn	40	10	ns
SSN Pulse Width between Write Cycles	tpwssn	50	40	ns
SSN Hold Time after SCLK Falling	thssn	40	25	ns
Data Set-up Time Prior to SCLK Falling	tsud	5	5	ns
Data Hold Time before SCLK Falling	thd	5	5	ns
Data Valid after SCLK Rising	tvd	20	16	ns

Serial Interface (SPI compatible, Clock Phase Bit =1, Clock Polarity Bit =0):

The serial interface is compatible with the 4-wire SPI. It requires a SerialSelectNot (SSN) signal, so it can't work in the 3-wire SPI interface.

The first rising edge of SCK will reset the INTN pin (interrupt pin) state.

The transmission starts from the most significant bit (MSB) and ends with the least significant bit (LSB). The transfer is done in bytes. Data transfer can stop after each byte by sending a LOW-HIGH-LOW level to the SSN.

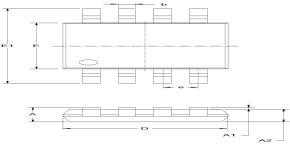
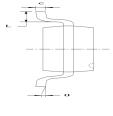



Figure 1. SPI Write

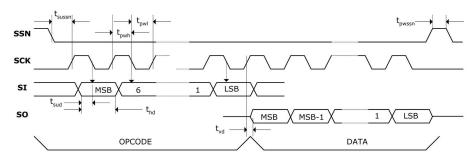


Figure 2. SPI Read

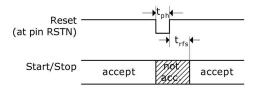


Figure 3. Reset Timing

Parameter	Symbol	Min	Max	Unit
Reset Pulse Width	tph	30	-	ns
Time after rising edge of reset pulse	trfs	30	_	ns
before hits are accepted		30		113

Note: After power-on reset it is necessary to wait minimum 500 us to settle the analog part.

POWER SUPPLY

MS1030 is a high-end mixed analog/digital device. To reach full performance of the chip, a good power supply is mandatory. It should be high capacitive and of low inductance.

MS1030 provides two pairs of power supply terminals:

Vio - I/O supply voltage

Vcc - Core supply voltage

All ground pins should be connected to a ground plane on the printed circuit board. Vio and Vcc should be provided by a battery or fixed linear voltage regulator. Do not use switched regulators to avoid disturbances caused by the I/O supply.

The measurement quality of a time-to-digital converter depends on a good power supply. The chip sees mainly pulsed current and therefore a sufficient bypassing is mandatory:

Vcc 47 μF (minimum 22 μF)

Vio 100 μF (minimum 22 μF)

The supply voltage should be provided through analog regulators. We strongly recommend not to use switch mode power supplies.

REGISTER DESCRIPTION

OP CODE & Registers

1. OP Code

The operation code is used to read or write registers or execute operation commands.

The specific commands are as follows:

Name Code Description Write_REGO 0x80 Write configuration register 0 Write_REG1 0x81 Write configuration register 1 Write_REG2 0x82 Write configuration register 2 Write_REG3 0x83 Write configuration register 3 Write_REG3 0x84 Write configuration register 3 Write_REG3 0x84 Write configuration register 4 Read_TOF_UP_STOP1 0xb0 Read the first STOP result register upstream Read_TOF_UP_STOP2 0xb1 Read the second STOP result register upstream Read_TOF_UP_STOP3 0xb2 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 0xb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 8th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 8th STOP result register upstream Read_TOF_UP_STOP8 0xb6 Read the 8th STOP result register upstream Read_TOF_UP_STOP8 0xb6 Read the 5th STOP result register upstream	The specific commands are as			
Write_REG1 0x81 Write configuration register 1 Write_REG2 0x82 Write configuration register 2 Write_REG3 0x83 Write configuration register 3 Write_REG4 0x84 Write configuration register 4 Read_TOF_UP_STOP1 0xb0 Read the first STOP result register upstream Read_TOF_UP_STOP2 0xb1 Read the second STOP result register upstream Read_TOF_UP_STOP3 0xb2 Read the third STOP result register upstream Read_TOF_UP_STOP5 0xb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP5 0xb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 5th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 5th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 8th STOP result register upstream Read_TOF_UP_STOP9 0xb6 Read the 8th STOP result register upstream Read_TOF_UP_STOP1 0xb8 Read the 8th STOP result register upstream Read_TOF_UP_STOP5 0xb0 Read the 8th STOP result register downstream Read_TOF_UP_STOP5 0xb0			·	
Write_REG2 0x82 Write configuration register 2 Write_REG3 0x83 Write configuration register 3 Write_REG4 0x84 Write configuration register 4 Read_TOF_UP_STOP1 0xb0 Read the first STOP result register upstream Read_TOF_UP_STOP2 0xb1 Read the second STOP result register upstream Read_TOF_UP_STOP3 0xb2 Read the third STOP result register upstream Read_TOF_UP_STOP4 0xb3 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 0xb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 5th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 5th STOP result register upstream Read_TOF_UP_SUM 0xb8 Read 8 STOP accumulation result register upstream Read_TOF_UP_STOP1 0xb9 Read the first STOP result register downstream Read_TOF_DN_STOP1 0xb9 Read the first STOP result register downstream Read_TOF_DN_STOP2 0xba Read the StoP result register downstream Read_TOF_DN_STOP5	_		 	
Write_REG3 0x84 Write configuration register 3 Write_REG4 0x84 Write configuration register 4 Read_TOF_UP_STOP1 0xb0 Read the first STOP result register upstream Read_TOF_UP_STOP2 0xb1 Read the first STOP result register upstream Read_TOF_UP_STOP3 0xb2 Read the third STOP result register upstream Read_TOF_UP_STOP4 0xb3 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 0xb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 5th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 5th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 5th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 5th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 5th STOP result register downstream Read_TOF_UP_STOP8 0xb8 Read the first STOP result register downstream Read_TOF_UP_STOP8 0xb0 Read the 4th STOP result register downstream Read_TO		0x81	Write configuration register 1	
Write_REG4 0x84 Write configuration register 4 Read_TOF_UP_STOP1 0xb0 Read the first STOP result register upstream Read_TOF_UP_STOP2 0xb1 Read the second STOP result register upstream Read_TOF_UP_STOP3 0xb2 Read the second STOP result register upstream Read_TOF_UP_STOP4 0xb3 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 0xb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 6th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 7th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 8th STOP result register upstream Read_TOF_UP_STOP1 0xb8 Read the 7th STOP result register downstream Read_TOF_UP_STOP1 0xb8 Read the 5th STOP result register downstream Read_TOF_DN_STOP1 0xb8 Read the 5th STOP result register downstream Read_TOF_DN_STOP2 0xb0 Read the 5th STOP result register downstream Read_TOF_DN_STOP3 0xbd Read the 5th STOP result register downstream <	Write_REG2	0x82	Write configuration register 2	
Read_TOF_UP_STOP1 Oxb0 Read the first STOP result register upstream Read_TOF_UP_STOP2 Oxb1 Read the second STOP result register upstream Read_TOF_UP_STOP3 Oxb2 Read the third STOP result register upstream Read_TOF_UP_STOP4 Oxb3 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 Oxb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 Oxb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 Oxb6 Read the 5th STOP result register upstream Read_TOF_UP_STOP7 Oxb6 Read the 8th STOP result register upstream Read_TOF_UP_STOP8 Oxb7 Read the 8th STOP result register upstream Read_TOF_UP_STOP9 Oxb8 Read the 8th STOP result register upstream Read_TOF_DN_STOP1 Oxb9 Read the first STOP result register downstream Read_TOF_DN_STOP1 Oxb0 Read the first STOP result register downstream Read_TOF_DN_STOP3 Oxb0 Read the 4th STOP result register downstream Read_TOF_DN_STOP3 Oxb0 Read the 5th STOP result register downstream Read_TOF_DN_STOP5 Oxb0 Read the 5th STOP result register downstrea	Write_REG3	0x83	Write configuration register 3	
Read_TOF_UP_STOP2 Oxb1 Read the second STOP result register upstream Read_TOF_UP_STOP3 Oxb2 Read the third STOP result register upstream Read_TOF_UP_STOP4 Oxb3 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 Oxb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 Oxb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 Oxb6 Read the 7th STOP result register upstream Read_TOF_UP_STOP8 Oxb7 Read the 8th STOP result register upstream Read_TOF_UP_SUM Oxb8 Read 8 STOP accumulation result register upstream Read_TOF_DN_STOP1 Oxb9 Read the first STOP result register downstream Read_TOF_DN_STOP2 Oxba Read the second STOP result register downstream Read_TOF_DN_STOP2 Oxba Read the brird STOP result register downstream Read_TOF_DN_STOP3 Oxbb Read the 4th STOP result register downstream Read_TOF_DN_STOP4 Oxbc Read the 6th STOP result register downstream Read_TOF_DN_STOP5 Oxbd Read the 6th STOP result register downstream Read_TOF_DN_STOP6 Oxbe Read the 6th STOP result register	Write_REG4	0x84	Write configuration register 4	
Read_TOF_UP_STOP3 Oxb2 Read the third STOP result register upstream Read_TOF_UP_STOP4 Oxb3 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 Oxb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 Oxb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 Oxb6 Read the 7th STOP result register upstream Read_TOF_UP_STOP8 Oxb7 Read the 8th STOP result register upstream Read_TOF_UP_SUM Oxb8 Read the 8th STOP result register upstream Read_TOF_UP_SUM Oxb8 Read the 8th STOP result register downstream Read_TOF_DN_STOP1 Oxb9 Read the first STOP result register downstream Read_TOF_DN_STOP1 Oxb9 Read the first STOP result register downstream Read_TOF_DN_STOP2 Oxba Read the 5th STOP result register downstream Read_TOF_DN_STOP3 Oxbb Read the 4th STOP result register downstream Read_TOF_DN_STOP4 Oxbc Read the 5th STOP result register downstream Read_TOF_DN_STOP5 Oxbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 Oxbf Read the 5th STOP result register downstream </td <td>Read_TOF_UP_STOP1</td> <td>0xb0</td> <td>Read the first STOP result register upstream</td>	Read_TOF_UP_STOP1	0xb0	Read the first STOP result register upstream	
Read_TOF_UP_STOP4 0xb3 Read the 4th STOP result register upstream Read_TOF_UP_STOP5 0xb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 8th STOP result register upstream Read_TOF_UP_SUM 0xb8 Read the 8th STOP result register upstream Read_TOF_DN_STOP1 0xb9 Read the first STOP result register downstream Read_TOF_DN_STOP1 0xb0 Read the second STOP result register downstream Read_TOF_DN_STOP2 0xba Read the second STOP result register downstream Read_TOF_DN_STOP3 0xbb Read the StOP result register downstream Read_TOF_DN_STOP3 0xbb Read the StOP result register downstream Read_TOF_DN_STOP5 0xbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 0xbe Read the 6th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 7th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 7th STOP result register downstream <td>Read_TOF_ UP_STOP2</td> <td>0xb1</td> <td>Read the second STOP result register upstream</td>	Read_TOF_ UP_STOP2	0xb1	Read the second STOP result register upstream	
Read_TOF_UP_STOPS 0xb4 Read the 5th STOP result register upstream Read_TOF_UP_STOP6 0xb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 0xb6 Read the 7th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 8th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 8th STOP result register upstream Read_TOF_UP_STOP8 0xb8 Read 8 STOP accumulation result register supstream Read_TOF_DN_STOP1 0xb9 Read the first STOP result register downstream Read_TOF_DN_STOP2 0xba Read the second STOP result register downstream Read_TOF_DN_STOP3 0xbb Read the 4th STOP result register downstream Read_TOF_DN_STOP4 0xbc Read the 5th STOP result register downstream Read_TOF_DN_STOP5 0xbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 0xbb Read the 5th STOP result register downstream Read_TOF_DN_STOP7 0xbf Read the 5th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 5th STOP result register	Read_TOF_ UP_STOP3	0xb2	Read the third STOP result register upstream	
Read_TOF_UP_STOP6 Oxb5 Read the 6th STOP result register upstream Read_TOF_UP_STOP7 Oxb6 Read the 7th STOP result register upstream Read_TOF_UP_STOP8 Oxb7 Read the 8th STOP result register upstream Read_TOF_UP_STOP8 Oxb8 Read the 8th STOP result register upstream Read_TOF_UP_SUM Oxb8 Read the 5th STOP accumulation result register downstream Read_TOF_UP_STOP1 Oxb9 Read the first STOP result register downstream Read_TOF_DN_STOP1 Oxb8 Read the second STOP result register downstream Read_TOF_DN_STOP3 Oxb8 Read the 4th STOP result register downstream Read_TOF_DN_STOP4 Oxbc Read the 4th STOP result register downstream Read_TOF_DN_STOP5 Oxbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 Oxbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 Oxbd Read the 7th STOP result register downstream Read_TOF_DN_STOP7 Oxbf Read the 7th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP9 Oxc0 Read the 8th STOP result r	Read_TOF_ UP_STOP4	0xb3	Read the 4th STOP result register upstream	
Read_TOF_UP_STOP7 0xb6 Read the 7th STOP result register upstream Read_TOF_UP_STOP8 0xb7 Read the 8th STOP result register upstream Read_TOF_UP_SUM 0xb8 Read the 8th STOP result register downstream Read_TOF_DN_STOP1 0xb9 Read the first STOP result register downstream Read_TOF_DN_STOP2 0xb0 Read the second STOP result register downstream Read_TOF_DN_STOP3 0xb0 Read the third STOP result register downstream Read_TOF_DN_STOP3 0xb0 Read the 4th STOP result register downstream Read_TOF_DN_STOP4 0xbc Read the 4th STOP result register downstream Read_TOF_DN_STOP5 0xbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 0xbe Read the 6th STOP result register downstream Read_TOF_DN_STOP7 0xbf Read the 8th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 8th STOP result register	Read_TOF_ UP_STOP5	0xb4	Read the 5th STOP result register upstream	
Read_TOF_UP_STOP8 0xb7 Read the 8th STOP result register upstream Read_TOF_UP_SUM 0xb8 Read 8 STOP accumulation result registers upstream Read_TOF_DN_STOP1 0xb9 Read the first STOP result register downstream Read_TOF_DN_STOP1 0xba Read the second STOP result register downstream Read_TOF_DN_STOP3 0xbb Read the second STOP result register downstream Read_TOF_DN_STOP4 0xbc Read the 4th STOP result register downstream Read_TOF_DN_STOP5 0xbd Read the 4th STOP result register downstream Read_TOF_DN_STOP6 0xbe Read the 6th STOP result register downstream Read_TOF_DN_STOP7 0xbf Read the 8th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 7th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 0xc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP9 0xbf Read the 8th STOP result register downstream Read_TOF_DN_STOP9 0xbf Read the 8th STOP result register downstream Read_TOF_DN_STOP9 0xc2 Read temperature measure	Read_TOF_ UP_STOP6	0xb5	Read the 6th STOP result register upstream	
Read_TOF_ UP_SUM Oxb8 Read 8 STOP accumulation result registers upstream Read_TOF_DN_STOP1 Oxb9 Read the first STOP result register downstream Read_TOF_DN_STOP2 Oxba Read the second STOP result register downstream Read_TOF_DN_STOP3 Oxbb Read the second STOP result register downstream Read_TOF_DN_STOP4 Oxbc Read the 4th STOP result register downstream Read_TOF_DN_STOP5 Oxbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 Oxbe Read the 5th STOP result register downstream Read_TOF_DN_STOP6 Oxbd Read the 5th STOP result register downstream Read_TOF_DN_STOP7 Oxbf Read the 5th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc1 Read sto the 5th STOP result register downstream Read_TOF_DN_STOP4 Oxc2 Read temperature	Read_TOF_ UP_STOP7	0xb6	Read the 7th STOP result register upstream	
Read_TOF_DN_STOP1 Oxb9 Read the first STOP result register downstream Read_TOF_DN_STOP2 Oxba Read the second STOP result register downstream Read_TOF_DN_STOP3 Oxbb Read the second STOP result register downstream Read_TOF_DN_STOP4 Oxbc Read the 4th STOP result register downstream Read_TOF_DN_STOP5 Oxbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 Oxbe Read the 6th STOP result register downstream Read_TOF_DN_STOP7 Oxbf Read the 7th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_STOP7 Oxc1 Read the 8th STOP result register downstream Read_TOF_DN_STOP7 Oxc2 Read temperature measureme	Read_TOF_ UP_STOP8	0xb7	Read the 8th STOP result register upstream	
Read_TOF_ DN_STOP2 Oxba Read the second STOP result register downstream Read_TOF_ DN_STOP3 Oxbb Read the third STOP result register downstream Read_TOF_ DN_STOP4 Oxbc Read the 4th STOP result register downstream Read_TOF_ DN_STOP5 Oxbd Read the 5th STOP result register downstream Read_TOF_ DN_STOP6 Oxbe Read the 6th STOP result register downstream Read_TOF_ DN_STOP7 Oxbf Read the 7th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc2 Read the 9th STOP result register downstream Read_TOF_ PT1 Oxc2 Read temperature me	Read_TOF_ UP_SUM	0xb8	Read 8 STOP accumulation result registers upstream	
Read_TOF_ DN_STOP3 Oxbb Read the third STOP result register downstream Read_TOF_ DN_STOP4 Oxbc Read the 4th STOP result register downstream Read_TOF_ DN_STOP5 Oxbd Read the 5th STOP result register downstream Read_TOF_ DN_STOP6 Oxbe Read the 6th STOP result register downstream Read_TOF_ DN_STOP7 Oxbf Read the 7th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_ DN_SUM Oxc1 Read 8 STOP accumulation result registers downstream Read_TEMP_PT1 Oxc2 Read temperature measurement PT1 port result register Read_Temp_PT2 Oxc3 Read temperature measurement PT2 port result register Read_Temp_PT3 Oxc4 Read temperature measurement PT4 port result register Read_Temp_PT4 Oxc5 Read temperature measurement PT4 port result register Read_PW_First Oxd0 Read the first wave pulse width result register Read_Status_REG Oxd2 Read status register Read_Comm_REG Oxd3 Read communication detection	Read_TOF_DN_STOP1	0xb9	Read the first STOP result register downstream	
Read_TOF_DN_STOP3OxbbRead the third STOP result register downstreamRead_TOF_DN_STOP4OxbcRead the 4th STOP result register downstreamRead_TOF_DN_STOP5OxbdRead the 5th STOP result register downstreamRead_TOF_DN_STOP6OxbeRead the 6th STOP result register downstreamRead_TOF_DN_STOP7OxbfRead the 7th STOP result register downstreamRead_TOF_DN_STOP8Oxc0Read the 8th STOP result register downstreamRead_TOF_DN_STOP8Oxc0Read the 8th STOP accumulation result registers downstreamRead_TOF_DN_SUMOxc1Read 8 STOP accumulation result registers downstreamRead_Temp_PT1Oxc2Read temperature measurement PT1 port result registerRead_Temp_PT2Oxc3Read temperature measurement PT2 port result registerRead_Temp_PT3Oxc4Read temperature measurement PT3 port result registerRead_Temp_PT4Oxc5Read temperature measurement PT4 port result registerRead_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedFOROx50Software reset to initialize all registersSTART_TOF_RESTARTOx03Bidirecti	Read TOF DN STOP2	0xba	Read the second STOP result register downstream	
Read_TOF_DN_STOP4 Oxbc Read the 4th STOP result register downstream Read_TOF_DN_STOP5 Oxbd Read the 5th STOP result register downstream Read_TOF_DN_STOP6 Oxbe Read the 6th STOP result register downstream Read_TOF_DN_STOP7 Oxbf Read the 7th STOP result register downstream Read_TOF_DN_STOP8 Oxc0 Read the 8th STOP result register downstream Read_TOF_DN_SUM Oxc1 Read 8 STOP accumulation result registers downstream Read_TEMP_PT1 Oxc2 Read temperature measurement PT1 port result register Read_Temp_PT2 Oxc3 Read temperature measurement PT2 port result register Read_Temp_PT3 Oxc4 Read temperature measurement PT3 port result register Read_Temp_PT4 Oxc5 Read temperature measurement PT4 port result register Read_PW_First Oxd0 Read the first wave pulse width result register Read_PW_Stop1 Oxd1 Read the first STOP pulse width result register Read_Comm_REG Oxd2 Read status register Read_Comm_REG Oxd3 Read communication detection register (lower 8 bits of register of register) Initialization, only the result and status registers are initialize		0xbb		
Read_TOF_DN_STOP5OxbdRead the 5th STOP result register downstreamRead_TOF_DN_STOP6OxbeRead the 6th STOP result register downstreamRead_TOF_DN_STOP7OxbfRead the 7th STOP result register downstreamRead_TOF_DN_STOP8Oxc0Read the 8th STOP result register downstreamRead_TOF_DN_SUMOxc1Read 8 STOP accumulation result registers downstreamRead_Temp_PT1Oxc2Read temperature measurement PT1 port result registerRead_Temp_PT2Oxc3Read temperature measurement PT2 port result registerRead_Temp_PT3Oxc4Read temperature measurement PT3 port result registerRead_Temp_PT4Oxc5Read temperature measurement PT4 port result registerRead_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTARTOx03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMP_RESTARTOx04Temperature measurement		0xbc		
Read_TOF_DN_STOP6OxbeRead the 6th STOP result register downstreamRead_TOF_DN_STOP7OxbfRead the 7th STOP result register downstreamRead_TOF_DN_STOP8Oxc0Read the 8th STOP result register downstreamRead_TOF_DN_SUMOxc1Read 8 STOP accumulation result registers downstreamRead_Temp_PT1Oxc2Read temperature measurement PT1 port result registerRead_Temp_PT2Oxc3Read temperature measurement PT2 port result registerRead_Temp_PT3Oxc4Read temperature measurement PT3 port result registerRead_Temp_PT4Oxc5Read temperature measurement PT4 port result registerRead_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TEMPOx04Temperature measurementSTART_TEMP_RESTARTOx05Two temperature measurements and two temperature tests		0xbd		
Read_TOF_DN_STOP7OxbfRead the 7th STOP result register downstreamRead_TOF_DN_STOP8Oxc0Read the 8th STOP result register downstreamRead_TOF_DN_SUMOxc1Read 8 STOP accumulation result registers downstreamRead_Temp_PT1Oxc2Read temperature measurement PT1 port result registerRead_Temp_PT2Oxc3Read temperature measurement PT2 port result registerRead_Temp_PT3Oxc4Read temperature measurement PT3 port result registerRead_Temp_PT4Oxc5Read temperature measurement PT4 port result registerRead_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTARTOx03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMPOx04Temperature measurementSTART_TEMP_RESTARTOx05Two temperature measurements and two temperature tests			-	
Read_TOF_DN_STOP80xc0Read the 8th STOP result register downstreamRead_TOF_DN_SUM0xc1Read 8 STOP accumulation result registers downstreamRead_Temp_PT10xc2Read temperature measurement PT1 port result registerRead_Temp_PT20xc3Read temperature measurement PT2 port result registerRead_Temp_PT30xc4Read temperature measurement PT3 port result registerRead_Temp_PT40xc5Read temperature measurement PT4 port result registerRead_PW_First0xd0Read the first wave pulse width result registerRead_PW_Stop10xd1Read the first STOP pulse width result registerRead_Status_REG0xd2Read status registerRead_Comm_REG0xd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REG0xd4Read clock calibration registerINITIAL0x70Initialization, only the result and status registers are initializedPOR0x50Software reset to initialize all registersSTART_TOF_UP0x01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTART0x03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMP0x04Temperature measurementSTART_TEMP_RESTART0x05Two temperature measurements and two temperature tests		0xbf	Read the 7th STOP result register downstream	
Read_TOF_ DN_SUMOxc1Read 8 STOP accumulation result registers downstreamRead_Temp_PT1Oxc2Read temperature measurement PT1 port result registerRead_Temp_PT2Oxc3Read temperature measurement PT2 port result registerRead_Temp_PT3Oxc4Read temperature measurement PT3 port result registerRead_Temp_PT4Oxc5Read temperature measurement PT4 port result registerRead_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTARTOx03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMPOx04Temperature measurementSTART_TEMP_RESTARTOx05Two temperature measurements and two temperature tests		0xc0		
Read_Temp_PT1Oxc2Read temperature measurement PT1 port result registerRead_Temp_PT2Oxc3Read temperature measurement PT2 port result registerRead_Temp_PT3Oxc4Read temperature measurement PT3 port result registerRead_Temp_PT4Oxc5Read temperature measurement PT4 port result registerRead_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTARTOx03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMPOx04Temperature measurementSTART_TEMP_RESTARTOx05Two temperature measurements and two temperature tests				
Read_Temp_PT20xc3Read temperature measurement PT2 port result registerRead_Temp_PT30xc4Read temperature measurement PT3 port result registerRead_Temp_PT40xc5Read temperature measurement PT4 port result registerRead_PW_First0xd0Read the first wave pulse width result registerRead_PW_Stop10xd1Read the first STOP pulse width result registerRead_Status_REG0xd2Read status registerRead_Comm_REG0xd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REG0xd4Read clock calibration registerINITIAL0x70Initialization, only the result and status registers are initializedPOR0x50Software reset to initialize all registersSTART_TOF_UP0x01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTART0x03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMP0x04Temperature measurementSTART_TEMP_RESTART0x05Two temperature measurements and two temperature tests				
Read_Temp_PT3Oxc4Read temperature measurement PT3 port result registerRead_Temp_PT4Oxc5Read temperature measurement PT4 port result registerRead_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTARTOx03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMPOx04Temperature measurementSTART_TEMP_RESTARTOx05Two temperature measurements and two temperature tests		0xc3	Read temperature measurement PT2 port result register	
Read_Temp_PT40xc5Read temperature measurement PT4 port result registerRead_PW_First0xd0Read the first wave pulse width result registerRead_PW_Stop10xd1Read the first STOP pulse width result registerRead_Status_REG0xd2Read status registerRead_Comm_REG0xd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REG0xd4Read clock calibration registerINITIAL0x70Initialization, only the result and status registers are initializedPOR0x50Software reset to initialize all registersSTART_TOF_UP0x01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTART0x03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMP0x04Temperature measurementSTART_TEMP_RESTART0x05Two temperature measurements and two temperature tests			<u> </u>	
Read_PW_FirstOxd0Read the first wave pulse width result registerRead_PW_Stop1Oxd1Read the first STOP pulse width result registerRead_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTARTOx03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMP_RESTARTOx04Temperature measurementSTART_TEMP_RESTARTOx05Two temperature measurements and two temperature tests			· · · · · · · · · · · · · · · · · · ·	
Read_PW_Stop10xd1Read the first STOP pulse width result registerRead_Status_REG0xd2Read status registerRead_Comm_REG0xd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REG0xd4Read clock calibration registerINITIAL0x70Initialization, only the result and status registers are initializedPOR0x50Software reset to initialize all registersSTART_TOF_UP0x01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTART0x03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMP0x04Temperature measurementSTART_TEMP_RESTART0x05Two temperature measurements and two temperature tests		0xd0	· · · · · · · · · · · · · · · · · · ·	
Read_Status_REGOxd2Read status registerRead_Comm_REGOxd3Read communication detection register (lower 8 bits of register 0)Read_CAL_REGOxd4Read clock calibration registerINITIALOx70Initialization, only the result and status registers are initializedPOROx50Software reset to initialize all registersSTART_TOF_UPOx01Time measurement, sending pulse and receiving channel according to register configurationSTART_TOF_RESTARTOx03Bidirectional automatic measurement, automatic measurement and result storageSTART_TEMPOx04Temperature measurementSTART_TEMP_RESTARTOx05Two temperature measurements and two temperature tests			·	
Read_Comm_REG				
Read_CAL_REG 0xd4 Read clock calibration register INITIAL 0x70 Initialization, only the result and status registers are initialized POR 0x50 Software reset to initialize all registers START_TOF_UP 0x01 Time measurement, sending pulse and receiving channel according to register configuration START_TOF_RESTART 0x03 Bidirectional automatic measurement, automatic measurement and result storage START_TEMP 0x04 Temperature measurement START_TEMP_RESTART 0x05 Two temperature measurements and two temperature tests				
INITIAL 0x70 Initialization, only the result and status registers are initialized POR 0x50 Software reset to initialize all registers START_TOF_UP 0x01 Time measurement, sending pulse and receiving channel according to register configuration START_TOF_RESTART 0x03 Bidirectional automatic measurement, automatic measurement and result storage START_TEMP START_TEMP_RESTART 0x05 Two temperature measurements and two temperature tests				
POR 0x50 Software reset to initialize all registers START_TOF_UP 0x01 Time measurement, sending pulse and receiving channel according to register configuration START_TOF_RESTART 0x03 Bidirectional automatic measurement, automatic measurement and result storage START_TEMP 0x04 Temperature measurement START_TEMP_RESTART 0x05 Two temperature measurements and two temperature tests			_	
START_TOF_UP Ox01 Time measurement, sending pulse and receiving channel according to register configuration START_TOF_RESTART Ox03 Bidirectional automatic measurement, automatic measurement and result storage START_TEMP Ox04 Temperature measurement START_TEMP_RESTART Ox05 Two temperature measurements and two temperature tests			-	
START_TOF_UP Ox01 to register configuration Bidirectional automatic measurement, automatic measurement and result storage START_TEMP Ox04 Temperature measurement START_TEMP_RESTART Ox05 Two temperature measurements and two temperature tests			-	
START_TOF_RESTART 0x03 Bidirectional automatic measurement, automatic measurement and result storage START_TEMP 0x04 Temperature measurement START_TEMP_RESTART 0x05 Two temperature measurements and two temperature tests	START_TOF_UP	0x01		
START_TOF_RESTART 0x03 and result storage START_TEMP 0x04 Temperature measurement START_TEMP_RESTART 0x05 Two temperature measurements and two temperature tests				
START_TEMP 0x04 Temperature measurement START_TEMP_RESTART 0x05 Two temperature measurements and two temperature tests	START_TOF_RESTART	0x03		
START_TEMP_RESTART 0x05 Two temperature measurements and two temperature tests	START TEMP	0x04	 	
	_		·	
The state of the s	START_CAL_RESONATOR	0x06	high-speed clock calibration tests	

2. Registers

Registers store configuration parameters, measurement results, and detection status, and are executed by different operation codes. The specific register names and operation codes are as follows:

different operation codes.	The specifi	c register names and operation codes are as follows:
Name	Code	Description
Write_REG0	0x80	Configuration register 0: 32 bits, write-only, not readable
Write_REG1	0x81	Configuration register 1: 32 bits, write-only, not readable
Write_REG2	0x82	Configuration register 2: 32 bits, write-only, not readable
Write_REG3	0x83	Configuration register 3: 32 bits, write-only, not readable
Write_REG4	0x84	Configuration register 4: 32 bits, write-only, not readable
TOF_UP_STOP1_REG	0xb0	Upstream 1st STOP result register: 16-bit integer, 16-bit decimal
TOF_UP_STOP2_REG	0xb1	Upstream 2nd STOP result register: 16-bit integer, 16-bit decimal
TOF_UP_STOP3_REG	0xb2	Upstream third STOP result register: 16-bit integer, 16-bit decimal
TOF_UP_STOP4_REG	0xb3	Upstream 4th STOP result register: 16-bit integer, 16-bit decimal
TOF_UP_STOP5_REG	0xb4	Upstream 5th STOP result register: 16-bit integer, 16-bit decimal
TOF_UP_STOP6_REG	0xb5	Upstream 6th STOP result register: 16-bit integer, 16-bit decimal
TOF_UP_STOP7_REG	0xb6	Upstream 7th STOP result register: 16-bit integer, 16-bit decimal
TOF_UP_STOP8_REG	0xb7	Upstream 8th STOP result register: 16-bit integer, 16-bit decimal
TOE LID CLIMA DEC	0.450	Upstream 8 STOP accumulation result registers:
TOF_UP_SUM_REG	0xb8	16-bit integer, 16-bit decimal
TOF_DN_STOP1_REG	0xb9	Downstream 1st STOP result register: 16-bit integer, 16-bit decimal
TOF_ DN _STOP2_REG	0xba	Downstream 2nd STOP result register: 16-bit integer, 16-bit decimal
TOF_DN_STOP3_REG	0xbb	Downstream third STOP result register: 16-bit integer, 16-bit decimal
TOF_DN_STOP4_REG	0xbc	Downstream 4th STOP result register: 16-bit integer, 16-bit decimal
TOF_DN_STOP5_REG	0xbd	Downstream 5th STOP result register: 16-bit integer, 16-bit decimal
TOF_DN_STOP6_REG	0xbe	Downstream 6th STOP result register: 16-bit integer, 16-bit decimal
TOF_ DN _STOP7_REG	0xbf	Downstream 7th STOP result register: 16-bit integer, 16-bit decimal
TOF_ DN _STOP8_REG	0xc0	Downstream 8th STOP result register: 16-bit integer, 16-bit decimal
TOE DN CHIMA DEC	01	Downstream 8 STOP accumulation result registers:
TOF_ DN _SUM_REG	0xc1	16-bit integer, 16-bit decimal
Temp PT1 REG	0,463	Temperature measurement PT1 result register:
Tellip_PTI_KEG	0xc2	16-bit integer, 16-bit decimal
Tomp DT2 DEC	0,463	Temperature measurement PT2 result register:
Temp_PT2_REG	0xc3	16-bit integer, 16-bit decimal
Tomp DT2 DEC	0xc4	Temperature measurement PT3 result register:
Temp_PT3_REG	0XC4	16-bit integer, 16-bit decimal
Temp_PT4_REG	0xc5	Temperature measurement PT4 result register:
Temp_F14_NEG	UNCS	16-bit integer, 16-bit decimal
PW_First_REG	0xd0	First wave pulse width result register: 11-bit integer
PW_Stop1_REG	0xd1	First STOP pulse width result register: 11-bit integer
Status_REG	0xd2	Status register: 16-bit integer
Comm_REG	0xd3	Communication register: 8-bit integer (lower 8 bits in write register 0)
CAL_REG	0xd4	Clock check register: 16-bit integer, 16-bit decimal

3. Configuration Register

The configuration register is set by the user according to the characteristics of the product.

This type of register can only be written but not read, as follows:

3.1. Write_REG0(Code: 0x80)

Bit	Defaults	Parameter	Description	Settings
31	0			
30	0			0 -44
29	0		Set the number of pulses	0 = off 1 = 1 pulse
28	0	ANZ_FIRE	transmitted by the fire port.	
27	0		, ,	127 = 127 pulses
26	1			
25	0			
24	0			
23	0		Sets the divide factor of the	0 = not permitted 1 = divided by 2
21	0	DIV_FIRE	pulses generated by the	···
20	1		internal clock signal	63 = divided by 64
19	0			
18	0			0 = divided by 1 1 = divided by 2
17	0	DIV_CLKHS	Sets pre-divider for CLKHS	2 = divided by 4 3 = divided by 4
16	0		Set the crystal start time interval after the crystal is	0 = Oscillator off 1 = Oscillator always on 2 = settling time 480 μs
15	0	START_CLKHS	turned on and before the measurement starts	3 = settling time 1.46 ms 4 = settling time 2.44 ms
14	1		measurement starts	5 to 7 = settling time 5.14 ms
13	0	NEG_START	Negation start input	0 = non-inverted input signal-rising edge 1 = inverted input signal-falling edge
12	0	NEG_STOP	Negation stop input	0 =non-inverted input signal-rising edge 1 =inverted input signal-falling edge
11	0			0 = off 1 = START
10	0	LUTIN	Set the expected number of	0 = off 1 = START 2 = 1 pulse 3 = 2 pulse
9	0	HITIN	pulses for the stop channel	4 = 3 pulse 5 = 4 pulse
8	0			6 = 5 pulse 7 = 6 pulse 8 = 7 pulse 9 = 8 pulse A = Not allowed
7	0	K.D		
6	0			0 = 64 μs 1 = 128 μs
5	1	SEL_TIMO_MB	Set overflow time	2 = 256 μs 3 = 512 μs 4 = 1024 μs 5 = 2048 μs
4	1	_		6 = 4096 μs @ 4 MHz ClkHS
3	0	CEL TOTOS	S + TST02 : 5 ::	O High 7
2	0	SEL_TST02*	Set TST02 pin function	0 = High_Z 1 = START output 2 = STOP1 output 3 = 4 kHz output
1	0			·
0	0	SEL_TST01*	Set TST01 pin function	0 = High_Z 1 = START output 2 = STOP1 output 3 = 32 kHz output

^{*} When these two pins are set to "high impedance" and connected to the input of the rear stage, the pins should be connected to VIO or GND through a large resistor to avoid causing large currents.

3.2. Write_REG1(Code: 0x81)

Bit	Defaults	Parameter	Description	Settings
31	0	EN_INT_TO	Timeout Interrupt trigger	1=open 0=off
30	0	EN_INT_HIT	End Hits Interrupt trigger	1=open 0=off
29	1	EN_INT_ALU	ALU Interrupt trigger	1=open 0=off
				0 = rising or falling edge
28	0	RFEDGE	Edge sensitivity	1 = rising and falling edge
27	0			
26	0			
25	0			
24	0			
23	0			
22	0			
21	0			
20	0			
19	0		Delay value for internal stop	
18	0	DELVAL1	enable unit, hit 1.	DELVAL1 = 0 to 65535
17	0	DELVALI	Fixed point number with 16	Delay_time:750ns~4ms @4MHz
16	0		integer digits in multiples of	Delay_time./30ms 4ms @4mm2
15	0		Tref.	
14	0			
13	0			
12	0			
11	0			
10	0			
9	0			
8	0			
7	0			
6	0	K.D		
5	0			0 = 0 mV
4	0			1 = 4 mV
3	0		Set comparator offset voltage,	
2	0	offset	From 124mV to -128 mV	31 = 124 mV
1	0		112 22 33 223	32 = -128 mV
0	0			 63 = -4 mV

3.3. Write_REG2(Code: 0x82)

EN_FIRST_WAVE=0

Bit	Defaults	Parameter	Description	Settings
31	0	ENI FIDET MANA	Enables the automatic first hit detection. In case	0 = disabled
31	0	EN_FIRST_WAVE	this bit is set registers 2 and 3 get a new meaning	1 = enabled
30-0	0	K.D		

EN_FIRST_WAVE=1

Bit	Defaults	Parameter	Description	Settings
31	0	EN_FIRST_WAVE	Enables the automatic first hit detection. In case this bit is set registers 2 and 3 get a new meaning	0 = disabled 1 = enabled
30	0	EDGE_FW	Sets the edge sensitivity for the first wave.	0=rising edge 1=falling edge
29	0			
28	0			
27	0	DELREL1	Sets the number of the periods after the first hit	3 to 64
26	0	DELINELI	for the 1st stop	3 10 04
25	0			
24	0			
23	0			
22	0			
21	0	DELREL2	Sets the number of the periods after the first hit	4 to 64
20	0	DLLINLLZ	for the 2nd stop	4 10 04
19	0			
18	0			
17	0			
16	0			
15	0	DELBELO	Sets the number of the periods after the first hit	Γ to 64
14	0	DELREL3	for the 3rd stop	5 to 64
13	0			
12	0			
11	0			
10	0			
9	0	DELBELA	Sets the number of the periods after the first hit	C to 64
8	0	DELREL4	for the 4th stop	6 to 64
7	0			
6	0			
5	0			
4	0			
3	0	DE1.5-:-	Sets the number of the periods after the first hit	
2	0	DELREL5	for the 5th stop	7 to 64
1	0			
0	0			

3.4. Write_REG3(Code: 0x83)

EN_FIRST_WAVE=0

Bit	Defaults	Parameter	Description	Settings
31-0	0	K.D		

EN FIRST WAVE=1

EN_FIRST_V	VAVE-1			
Bit	Defaults	Parameter	Description	Settings
31	0			
30	0			
29	0		Sets the number of the periods	
28	0	DELREL6	after the first hit for the 6th stop	8 to 64
27	0			
26	0			
25	0			
24	0			
23	0		Sets the number of the periods	
22	0	DELREL7	after the first hit for the 7th stop	9 to 64
21	0			
20	0			
19	0			
18	0			
17	0		Sets the number of the periods	
16	0	DELREL8	after the first hit for the 8th stop	10 to 64
15	0			
14	0			
13	0	DIS_PW	Disable pulse width measurement	0= pulse width measurement on 1= pulse width measurement off
12	0			0 = 0 mv
11	0		The first wave turns on the	1 = 2 mv
10	0		comparator bias voltage:	•••
9	0	wave_offs	-128mv~126mv(After receiving the	63 = 126 mV
8	0		first wave, the bias voltage returns	64 = -128 mv
7	0		to the offset setting voltage)	
6	0			127 = -2 mv
5-0	0	K.D		

3.5. Write_REG4(Code: 0x84)

Bit	Defaults	Parameter	Description	Settings
31	0			Bit 31 = 1: FIRE_BOTH
30	0			(inverts FIRE_DOWN)
		CONE FIRE	Output configuration for pulse generator	Bit 30 = 1: enable output
20		CONF_FIRE	3'b 011 is not allowed	FIRE_UP
29	0			Bit 29 = 1: enable output
				FIRE_DOWN
		PHASE_FIREUP	FIREUP Inverted	0 = no inversion
28	0	PHASE_FIREUP	FIREOF IIIVerted	1 = inversion
		PHASE	FIREDOWN Inverted	0 = no inversion
27	0	_FIREDOWN	FIREDOWN Inverted	1 = inversion
		CEL STADT FIDE	Fire pulse is used as TDC start	0 = External input START
26	0	SEL_START_FIRE	rife pulse is used as TDC start	1 = Use FIRE as Start
			Open analog measurement section,	0 = STOP1 and STOP2 are
			STOP1 and STOP2 are analog inputs now	digital inputs
25	0	EN_ANALOG	and automatically selected by the	1 = The analog section is
			internal multiplexer.	used.
			Set the number of ports for	0 = 2 ports (PT1 and PT2)
24	0	ANZ_PORT	temperature measurement	1 = 4 ports
				0 = 128 μs @ 4 MHz
23	0	TCYCLE	Sets cycle time for	1 = 512 μs @ 4 MHz
			temperature measurement	(recommended)
			Number of dummy cycles at the	0. 3 Falsa managamamama
22	0	0 ANZ_FAKE	beginning of a temperature	0 = 2 Fake measurements 1 = 7 Fake measurements
			measurement	1 - 7 rake measurements
				0 = use 32.768 kHz as cycle
			Select reference signal for internal cycle	clock
21	1	SEL_ECLK_TMP	clock for temperature measurement	1 = use 128× CLKHS as
		clock for temperature measurement	period for cycle clock	
20	0	TEMP_PORTDIR	Ports for temperature measurement are	0 = PT1 > PT2 > PT3 > PT4
		_	measured in the opposite order	1 = PT4 > PT3 > PT2 > PT1
19	0		Timer to charge up the capacitor of the	Charge time: 0 = 90 μs
		0 TW2	recommend RC network when the	1 = 120 μs
18	0		internal analog part is used.	2 = 150 μs
			3 = 300 μs	

Bit	Defaults	Parameter	Description	Settings
17	0	HZ60	make complete up and down flow measurement and also two temperature measurements in series. The time interval between two measurements is based on 50 or 60 Hz.	0 = 50 Hz base, 20 ms 1 = 60 Hz base, 16.67ms
16	0			0=0.25 (5ms) 1=0.5 (10ms)
15	0		Selects timer for triggering the second	2=0.75 (15ms) 3=1.0 (20ms)
14	0	CYCLE_TEMP	temperature measurement in multiples of 50/60Hz	4=1.25 (25ms) 5=1.5 (30ms) 6=1.75 (35ms) 7=2.0 (40ms) @50hz
13-11	0	CYCLE_TOF	Selects timer for triggering the second TOF measurement in multiples of 50/60Hz	0=0.25 (5ms) 1=0.5 (10ms) 2=0.75 (15ms) 3=1.0 (20ms) 4=1.25 (25ms) 5=1.5 (30ms) 6=1.75 (35ms) 7=2.0 (40ms) @50hz
10	0	EN_ERR_VAL	Timeout forces ALU to write 0xFFFFFFFF into the output register	0 = disabled 1 = enabled
9	0	K.D		
8	0	FIREO_DEF	Specifies the default level of the inactive fire buffer.	0 = High-Z 1 = LOW
7-0	0	K.D		

4. Result Register

The result registers mainly include: a time measurement result register, a temperature measurement result register, a first wave pulse width measurement result register, and a clock check coefficient result register.

4.1. Time Measurement Result Register

Name	Code	Description	
Write_REG0	0x80	Configuration register 0: 32 bits, write-only, not readable	
Write_REG1	0x81	Configuration register 1: 32 bits, write-only, not readable	
Write_REG2	0x82	Configuration register 2: 32 bits, write-only, not readable	
Write_REG3	0x83	Configuration register 3: 32 bits, write-only, not readable	
Write_REG4	0x84	Configuration register 4: 32 bits, write-only, not readable	
TOF_UP_STOP1_REG	0xb0	Upstream 1st STOP result register: 16-bit integer, 16-bit decimal	
TOF_ UP_STOP2_REG	0xb1	Upstream 2nd STOP result register: 16-bit integer, 16-bit decimal	
TOF_ UP_STOP3_REG	0xb2	Upstream third STOP result register: 16-bit integer, 16-bit decimal	
TOF_ UP_STOP4_REG	0xb3	Upstream 4th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ UP_STOP5_REG	0xb4	Upstream 5th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ UP_STOP6_REG	0xb5	Upstream 6th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ UP_STOP7_REG	0xb6	Upstream 7th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ UP_STOP8_REG	0xb7	Upstream 8th STOP result register: 16-bit integer, 16-bit decimal	
TOE LID CLIM DEC.		Upstream 8 STOP accumulation result registers:	
TOF_ UP_SUM_REG	0xb8	16-bit integer, 16-bit decimal	
TOF_DN_STOP1_REG	0xb9	Downstream 1st STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _STOP2_REG	0xba	Downstream 2nd STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _STOP3_REG	0xbb	Downstream third STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _STOP4_REG	0xbc	Downstream 4th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _STOP5_REG	0xbd	Downstream 5th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _STOP6_REG	0xbe	Downstream 6th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _STOP7_REG	0xbf	Downstream 7th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _STOP8_REG	0xc0	Downstream 8th STOP result register: 16-bit integer, 16-bit decimal	
TOF_ DN _SUM_REG	0xc1	Downstream 8 STOP accumulation result registers:	
TOF_ DIN _30INI_KEG	OXCI	16-bit integer, 16-bit decimal	

There are 18 registers in the time measurement result register, the operation code 0xb0~0xb8 corresponds to the upstream result register, and the operation code 0xb9~0xc1 corresponds to the downstream result register, When using START_TOF_UP (0x01) measurement instruction, the test result is always stored in the corresponding result register 0xb0~0xb8 no matter which FIRE channel is sent, When using START_TOF_RESTART (0x03) to automatically measure twice, the upstream measurement results are stored in the upstream flow register corresponding to 0xb0~0xb8, and the downstream measurement results are stored in the downstream flow register corresponding to 0xb0~0xc1.

The time measurement result is a multiple of the internal reference clock period. The internal reference clock is equal to the external reference clock divided by DIV_CLKHS (DIV_CLKHS = 1, 2, 4). The calibration value is a 32-bit fixed-point number consisting of a 16-bit integer and a 16-bit decimal. Therefore a calibration value occupies a result register. The serial output starts from the most significant bit, ends with the least significant bit, and exists in two's complement form.

Time = $RES_X \times Tref \times N$, with N = 1, 2 or 4

4.2. Temperature Measurement Result Register

Name	Code	Description
Temp_PT1_REG	0xc2	Temperature measurement PT1 result register: 16-bit integer, 16-bit decimal
Temp_PT2_REG	0xc3	Temperature measurement PT2 result register: 16-bit integer, 16-bit decimal
Temp PT3 REG	0xc4	Temperature measurement PT3 result register: 16-bit integer, 16-bit decimal
Temp_PT4_REG	0xc5	Temperature measurement PT4 result register: 16-bit integer, 16-bit decimal

Temperature measurement is a measurement of discharge time, and has the same structure as time measurement. The ratio of discharge time is the same as the ratio of resistance:

RT = Rref
$$\times \tau_T / \tau_{ref}$$

When taking two consecutive temperature measurements, only the last measurement result is retained.

4.3. First Wave Pulse Width Measurement Result Register

Name	Code	Description	
PW_First_REG	0xd0	First wave pulse width result register: 11-bit integer	
PW_Stop1_REG	0xd1	First STOP pulse width result register: 11-bit integer	

The first wave pulse width measurement result has the same structure as the time measurement, and is only used for the ratio between the two data. The absolute value has no reference value.

4.4. Clock Check Coefficient Result Register

Name	Code	Description
CAL_REG	0xd4	Clock check register: 16-bit integer, 16-bit decimal

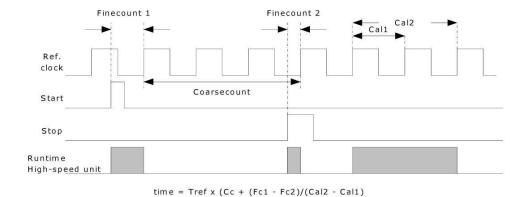
This register counts based on the standard clock and measurement clock values, and then stores this value in Read_CAL_REG. It's a 32-bit fixed floating point number, where 16 bits are integers and 16 bits are decimal.

4.5. Status Register

Bit	Name	Description	Remark	
15-13				
12	Temp_short	Shorted temperature sensor	1=Short	
11	Temp_open	Open temperature sensor	1= Open	
10	Counter_Flood	Coarse value counter overflow	1= Overflow	
9	TDC-Flood	TDC overflow	1= Overflow	
8				
7				
6				
5	Stop_num	Number of HIT obtained		
4				
3				
2		Result address pointer		
1	Register			
0				

FUNCTION DESCRIPTION

1. Time Measurement Overview


1.1. Overview

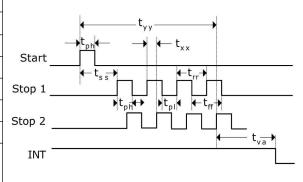
Time measurement is composed of analog front end, digital TDC, and arithmetic unit (ALU). The analog front end is mainly responsible for signal conversion and transmission to digital TDC. Digital TDC is composed of precision counter and coarse value counter, responsible for valid signals on the front end. Converted to unit time, the calculator calibrates the unit time stored by the digital TDC to the standard time related to the reference clock and stores it in the corresponding result register. The following is a brief description:

- Measurement accuracy up to 15PS, minimum resolution up to 3.8PS (1LSB)
- Maximum measurement range up to 500ns~4ms @ 4MHz
- Has 8 STOP sampling capabilities and accumulates 8 STOPs
- · The measurement results upstream and downstream have independent result registers
- Through the opcode can automatically test upstream and downstream
- · In analog mode, can select the first wave mode and non-first wave mode measurement
- Optional rising / falling edge trigger

1.2. Digital TDC

The digital TDC is composed of a precision counter and a coarse value counter. The precision of the precision counter can reach 15PS, the minimum resolution is 3.8ps (1LSB), the precision counter count range is $0 \sim 2us$; and the coarse counter count range is 500ns $\sim 4ms$ @ 4MHz, TDC's high-speed unit does not measure the entire time interval, it only measures the interval time (precision counter) from the START or STOP signal to the rising edge of the adjacent reference clock. Between two precision measurements, the TDC counts the number of cycles of the reference clock (coarse value counter). So the time measurement result is the sum of precision measurement value and rough measurement value. Digital TDC has 8 STOP sampling capabilities, but each STOP interval is not less than $2 \times Tref$.

The measurement range is limited by the size of the coarse counter:


tyy = Tref
$$\times 2^{14} \approx 4.1$$
ms @ 4MHz

VERSION: 1.2

The time difference between Start and Stop is calculated using a 26-bit measurement range.

	Time (Condition)	Description		
tph	2.5 ns (min.)	Minimum pulse width		
tpl	2.5 ns (min.)	Minimum pulse width		
tss	2×Tref	Start to Stop		
trr	2×Tref	Rising edge to rising edge		
tff	2×Tref	Falling edge to Falling edge		
tva	4.6µs(max)	Last hit to data valid		
	4ms (max)	Max. measuring range =		
tyy	@ 4MHz	Tref × 2 ¹⁴		

Each input can be individually set to be active on rising or falling edge, Bit 0-2 (NEG_START, NEG_STOP1) of register 0 can be used to select the trigger edge.All START / STOP input ports support high-level activation. note: If the time difference between Start-Stop is less than the minimum time limit tzz, TDC will ignore all time difference pulses less than tzz.

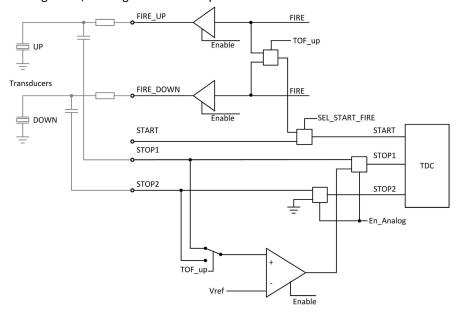
1.3. ALU

The function of the ALU is to process the value of the digital TDC count. It mainly calibrates the value of the digital TDC, saves the calibrated value to the corresponding result register and sends the status register, and also accumulates the expected STOP sum and accumulates the value. Stored in the corresponding result register, Note the following when using the ALU:

- When setting the "DIV_CLKHS" (17 ~ 18BIT of Register 0) reference clock: 2x Tref < 2US;
- If Timeout overflow occurs, ALU will not calculate the content of digital TDC;
- ALU calculation takes some time. If EN_INT_HIT = 1, please wait for a period of time after the interrupt before reading the result register.

1.4. Analog Front End

The AFE is mainly responsible for signal conversion and transmission to the digital TDC. The AFE is composed of a precision comparator, a programmable bias voltage generator, a first wave processor, and a high-speed switch. The AFE can use digital and analog signals:


- When EN_ANALOG = 0, the AFE can only collect digital signals, the START signal enters from START (PIN31), and the STOP signal enters from STOP1 (PIN30).
- When EN_ANALOG = 1, the internal integrated analog circuit input section is turned on. This section can be used as an alternative input for the digital input section. Especially when designing ultrasonic heat time measurement, this function will greatly simplify the design of the entire circuit. The signal will be coupled to the input through a high-pass filter. The analog signal can be input from the two ports STOP1 and STOP2. Because the internal comparator cannot trigger with zero, the trigger voltage of the comparator is set to 1/3 VCC. The analog selector will select different measurement inputs based on the direction of measurement. The chopper-stabilized comparator will ensure lower voltage zero drift (less than 2mV), which is a prerequisite for high-quality measurements. The comparator's voltage zero drift will be corrected very frequently internally by a chopper circuit. If the temperature or voltage changes with time, the voltage zero drift will be automatically adjusted to less than 2 mV.

All components are controlled by the control unit of the MS1030. They are turned on only during the measurement process to reduce overall measurement power.

The comparator offset voltage offset can be set on a 4mV basis, from -128mV to +124 mV. This setting is set by the parameter offset, Bit 0-5 in register 1, and is given in two's complement form.

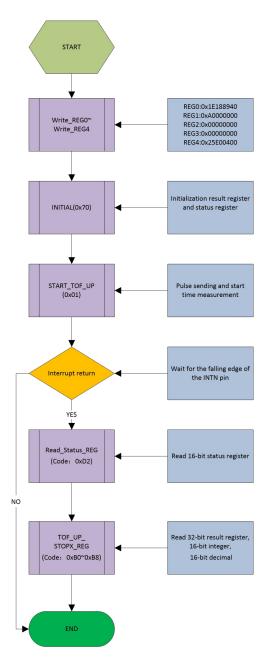
When the first wave mode is applied, the bias voltage recognized by the first wave can be additionally set. The setting can be performed on the basis of 2mV, from-128mV to +126 mV. This setting is set by the parameter wave_offs, Bit 6-12 in register 3, and is given in 2's complement form.

2. Flow Measurement Mode


The time measurement mode is divided into: digital measurement mode, analog measurement mode, first wave measurement mode. The three measurement modes are introduced below.

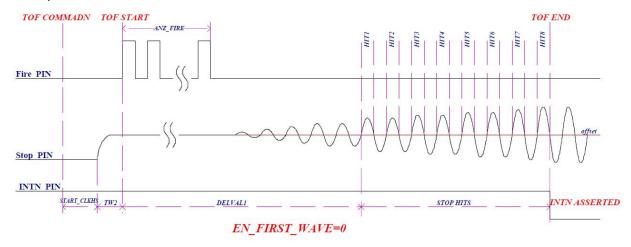
2.1. Digital Measurement Mode

2.1.1. Digital Measurement Overview


When "EN_ANALOG = 0", select digital measurement mode. In this measurement mode, the start signal is input from the START pin, the end signal is input from the STOP1 pin, the STOP2 pin is invalid, and START and STOP1 The input signals are all digital signals. The figure below shows the digital measurement waveform. The measurement process is as follows:

- A. Send "TOF" command 0x01;
- B. "START_CLKHS" is the high-speed crystal oscillator delay. This delay is for the high-speed crystal oscillator to switch from off mode to stable start-up time;
- C. Send a pulse or an external signal to trigger the START signal. At this time, the measurement starts;
- D. "DELVAL1" is a STOP shielding window. The setting time is set according to the user process. The setting time should not exceed the echo return time to avoid overflow;
- E. When the "DELVAL1" masking time is completed, the STOP signal is started to be received, until the "HITIN" setting is expected, and no more echo signals are received. At this time, the ALU performs calibration and saves the data to the corresponding result register. A maximum of 8 responses can be received Wave signal, and add and add 8 echoes to the result register to complete the test;
- F. When the entire test is completed, a falling edge is generated on the "INTN" pin to notify the MCU to process the data.

2.1.2. Digital Measurement Software Process

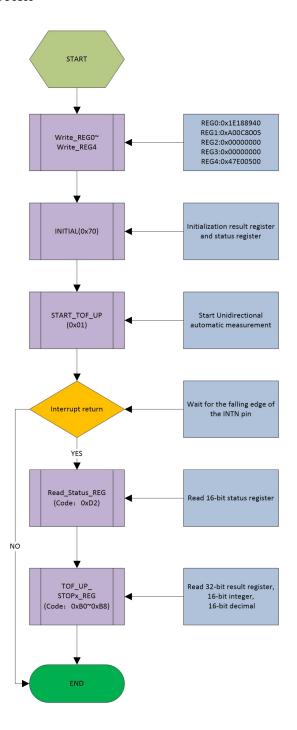


2.2. Analog Measurement Mode

2.2.1. Analog Measurement Overview

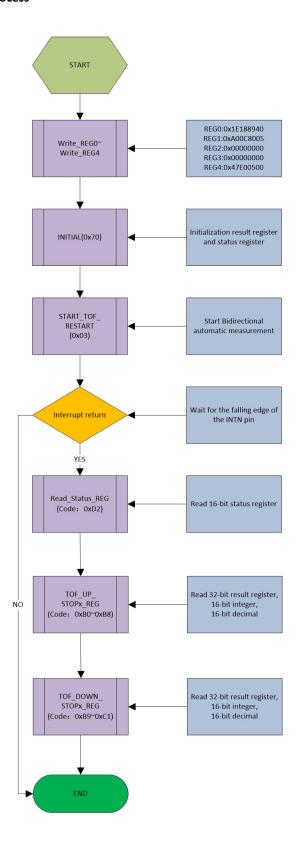
When "EN_ANALOG = 1" and "EN_FIRST_WAVE = 0", select the analog measurement mode. In this measurement mode, the internal analog part is turned on. The main functions are as follows:

- Built-in high-precision analog comparator, which is turned on during measurement and automatically closed after measurement is completed, thus achieving low power consumption.
- The echo signal can be input from STOP1 and STOP2 through capacitive coupling. When Fire_UP sends a pulse, the echo signal is input from STOP2 pin. When Fire_DOWN sends a pulse, the echo signal is input from STOP1 pin.
- Built-in programmable bias voltage, which can be set through register "offset", voltage range from -64~62mV.
- Use the "START_TOF_RESTART" operation command to achieve two-way automatic test. After the test is completed, the upstream and downstream current results are saved in the result register separately. There is no need to wake up the MCU during the measurement process, thereby reducing the measurement power consumption.



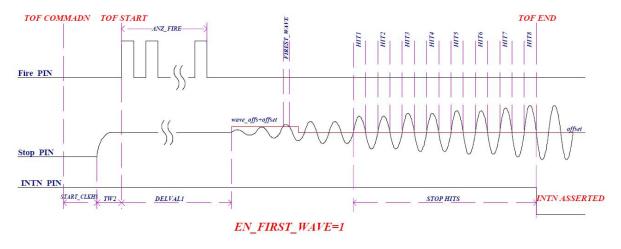
The figure above is an analog measurement waveform. The measurement process is as follows:

- A. Send "TOF COMMADN" command 0x01 or 0x03;
- B. "START_CLKHS" is the high-speed crystal oscillator delay. This delay is for the high-speed crystal oscillator to switch from off mode to stable start-up time;
- C. "TW2" is the charging time of the STOP sampling capacitor, so that the STOP terminal charges the sampling capacitor to 1/3VCC;
- D. Send pulses, set the number of sent pulses according to "ANZ_FIRE", and trigger the START signal with the first pulse sent at this time;
- E. "DELVAL1" is an echo shielding window. The setting time is set according to the user process. The setting time should not exceed the echo return time to avoid overflow;
- F. offset is the programmable comparator bias voltage, the voltage range is from -64mV \sim 62mV;
- G. When the "DELVAL1" masking time has elapsed, the comparator starts to receive the echo signal. When the amplitude of the echo signal exceeds the "offset" bias voltage, STOP receives the echo signals in turn until the "HITIN" expected pulse is returned. Receive the echo signal. At this time, the ALU performs calibration and saves the data to the corresponding result register. A maximum of 8 echo signals can be received, and the 8 echoes are accumulated and placed in the result register to complete a test;
- H. When the entire test is completed, a falling edge is generated on the "INTN" pin to notify the MCU to process the data.



2.2.2. Analog Measurement Software Process Unidirectional Measurement Process

Bidirectional Measurement Process



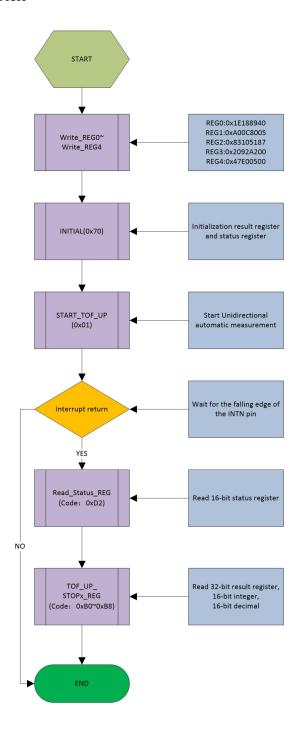
2.3. First Wave Measurement Mode

2.3.1. First Wave Measurement Overview

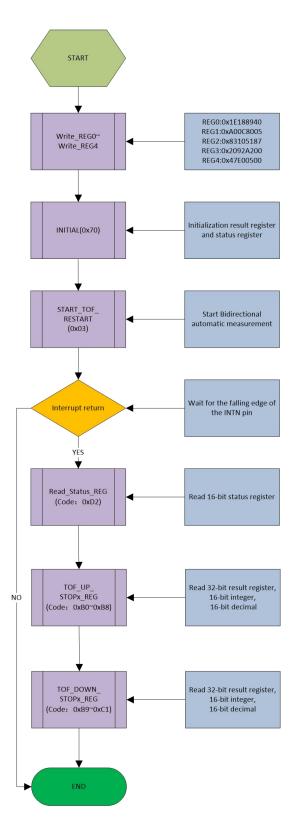
When "EN_ANALOG = 1" and "EN_FIRST_WAVE = 1", the simulation first wave measurement mode is selected. At this time, the "Write_REG2" and "Write_REG3" registers have a new meaning. The offset is automatically controlled to detect the first safety echo pulse. Then, the ToF flight time of the required echo is measured according to the position of the first wave. In high dynamic applications (such as ultrasonic ranging), it is not possible to determine the flight only through a fixed stop shield window (fixed DALVAL value). Whether the change in time is greater than one drive cycle and thus measurement error, so using the first wave measurement mode has the following advantages:

- Safe first wave detection, allowing highly dynamic applications such as ultrasonic ranging;
- · Can receive up to 8 echo signals;
- · Water backflow can also be identified and treated
- Pulse width measurement can help detect received echo signals, and can issue alarm signals based on triggered amplitude levels;
- Offset voltage offset low noise, can give empty pipe signal;
- Measure the ToF time of flight with the first wave so that the temperature can be estimated.

The picture above is the first wave measurement waveform, the measurement process is as follows:

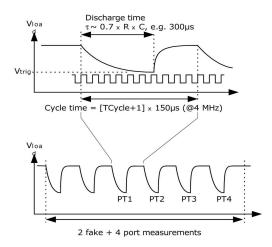

- A. Send "TOF COMMADN" command 0x01 or 0X03;
- B. "START_CLKHS" is the high-speed crystal oscillator delay. This delay is for the high-speed crystal oscillator to switch from off mode to stable start-up time;
- C. "TW2" is the charging time of the STOP sampling capacitor, so that the STOP terminal charges the sampling capacitor to 1/3VCC;
- D. Send pulses, set the number of sent pulses according to "ANZ_FIRE", and trigger the START signal with the first pulse sent at this time;
- E. "DELVAL1" is an echo shielding window. The setting time is set according to the user process. The setting time should not exceed the echo return time to avoid overflow;
- F. "Wave_offs" and "offset" are the first wave bias voltage setting and the comparator bias voltage setting, and adding these two voltages together is the threshold voltage of the first wave; Voltage range from -256mV \sim 250mV;

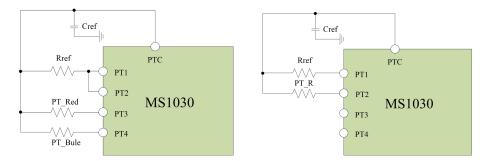
- G. The first wave is triggered when the echo signal exceeds the threshold voltage detection of the first wave, and when "DIS_PW = 0", the first wave pulse width "FIREST_WAVE" is saved to the "PW_First" first wave pulse width result register; At the same time, the threshold voltage of the first wave is returned to the "offset" comparator bias voltage, and the subsequent echo signals are detected;
- H. The first and second echoes detected after the first wave are not regarded as valid signals for STOP. The echo signals are received in sequence from the start of the third echo, and will not be received until all the "HITIN" expected pulses are returned. Echo signal. At this time, the ALU performs calibration and saves the data to the corresponding result register. It can receive up to 8 echo signals, and add and accumulate 8 echoes into the result register to complete a one-way test.:
- I. When the entire test is completed, a falling edge is generated on the "INTN" pin to notify the MCU to process the data.



2.3.2. First Wave Measurement Software Flow Unidirectional Measurement Process

Bidirectional measurement process




3. Temperature Measurement Mode

3.1. Temperature Measurement Overview

The MS1030 integrates a high-precision temperature measurement unit. The measurement principle is based on the measurement of the discharge time of the capacitor based on the resistance. The capacitor will discharge the reference resistance and the temperature sensor resistance separately, and then convert the resistance value of the temperature sensor through resistance to obtain accurate Calculate the temperature.

The temperature measurement unit has 4 resistance measurement ports. Two are used as the temperature sensor measurement terminal, and the others are used to connect the reference resistance.

M1030 can only measure two-wire sensors, not four-wire sensors. The accuracy of temperature measurement using PT500 or PT1000 fully meets the requirements specified by the heat meter. When using PT500 or PT1000 sensors, two reference resistors can be omitted. It also supports the measurement of PT100 sensor, but the stability of the measurement will be reduced. In this case, it is recommended to connect both reference resistors instead of just one. This will help compensate the temperature sensor's gain offset across the temperature range with a two-point temperature calibration.

Temperature measurement is done completely automatically. through the microcontroller, send the opcode START_TEMP or START_TEMP_RESTART. Send START_TEMP_RESTART and MS1030 will measure temperature twice, with a time delay between multiples of 50 Hz/60Hz. This helps to reduce 50Hz/60Hz noise.

For one temperature measurement, the MS1030 first performs 2 or 7 warm-up pseudo measurements on the PT1 port, and then performs temperature measurement in the order of PT1> PT2 > PT3> PT4port. After the measurement of the four ports is completed, the interrupt flag will be set.MS1030 can also perform temperature measurement in the opposite port order. In this case, the warm-up measurement will start from the PT4 port.

The four measurement results will be in the temperature result registers Temp_PT1_REG ~ Temp_PT4_REG. The ratio of Rtemp/Rref can then be calculated based on the ratio of the result registers. By querying the temperature table, the temperature value currently measured by the sensor can be obtained.

3.2. Configuration Register Description

Bit 22 of the Write_REG4 register, ANZ_FAKE, sets the number of warm-up measurements for temperature measurement. This setting is to avoid mechanical effects during capacitor charging and discharging.

```
ANZ_FAKE = 0 2 dummy measurements
ANZ_FAKE = 1 7 dummy measurements
```

The 23rd bit TCYCLE of the Write_REG4 register sets the cycle time of the temperature measurement. Note that the set time must be less than the register Write_REG0 "SEL_TIMO_MB" to avoid overflow measurement abnormality.

```
TCYCLE = 0 128 μs cycle time @ 4MHz
TCYCLE = 1 512 μs cycle time @ 4MHz
```

The 23rd bit ANZ_PORTS of the Write_REG4 register sets how many temperature measurement ports will be used, When set to 4 ports, all 4 ports must be connected with resistors or sensors to prevent the status register from reporting an "open circuit" exception.

```
ANZ_PORTS = 0 2 ports = 1 sensor
ANZ_PORTS = 1 4 ports = 2 sensors
```

The 20th bit of TEMP PORTDIR in the Write REG4 register measures the order of the ports.

When "TEMP_PORTDIR = 0", PT1 warms up and starts measuring from PT1. When "TEMP_PORTDIR = 1", PT4 warms up and then starts measuring from PT4:

```
TEMP_PORTDIR = 0 PT1 > PT2 > PT3 > PT4
TEMP_PORTDIR = 1 PT4 > PT3 > PT2 > PT1
```

The 14 \sim 17 HZ60 and CYCLE_TEMP of the Write_REG4 register are set.

When using the "START_TEMP_RESTART" command, the interval between two temperature measurements:

```
HZ60 = 0 50 Hz base

HZ60 = 1 60 Hz base

CYCLE_TEMP 0 = 0.25 (5ms @50hz ) 1 = 0.5 (10ms @50hz)

2 = 0.75 (15ms @50hz ) 3 = 1.0 (20ms @50hz )

4 = 1.25 (25ms @50hz ) 5 = 1.5 (30ms @50hz )

6 = 1.75 (35ms @50hz ) 7 = 2.0 (40ms @50hz )
```

3.3. Recommended Capacitor

In order to achieve accurate measurement results, we recommend having very low dC / dU capacitors. We recommend using COG series capacitors or CfCap series。

The discharge time is about 150 µs. Therefore, the following values should be selected for the capacitor:

```
PT500: 220 nF
PT1000: 100 nF
```

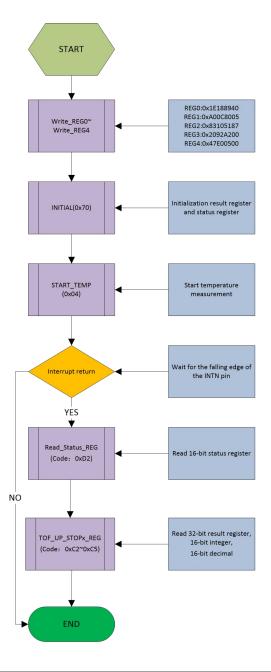
Set Tcycle = 1 to avoid overflow errors

Do not use X7R or similar capacitor materials in heat meter applications.

3.4. Power Consumption

Temperature measurement with the MS1030 is extremely low compared to temperature measurement with the A / D converter $_{\circ}$

Take a complete temperature measurement (2 sensor, 2 reference), including all calculations, and consume less than $2.5\mu A$ / s. If a temperature measurement is performed every 30 seconds (typical measurement frequency of a calorimeter), the average current consumption is $0.08\mu A$, which is less than 1/50 of the power consumption of other measurement methods. The PT500 sensor will double the current.

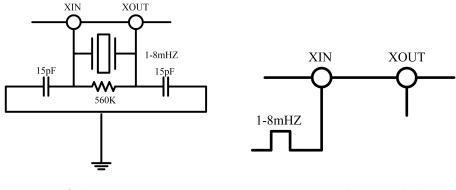

3.5. Error Detection

Additionally the temperature unit checks the plausibility of the results. It is able to detect a short circuit of the sensor or an open sensor. The MS1030 provides in the relevant output register an error code instead of a measurement value.

- Short circuit between lines: equivalent to a very short time interval (< 8 x Tref = 2 μ s @ 4 MHz). The MS1030 writes a 0x00h to the output register of the shorted sensor.
- Broken sensor/Short circuit against GND: equivalent to no stop signal or timeout. The MS1030 writes a 0xFFFFFFFFh into the output register of the open sensor.

Note: Due to a bug it is necessary to have SEL_TIMO_MB2 at 2ms to get a correct interrupt indication when 512 μ s cycle time is selected.

3.6. Temperature Measurement Software Flow



4. Oscillator

The MS1030 has two external oscillators, a high-speed oscillator and a 32.768K oscillator. The high-speed clock is used as a coarse value counter for the TDC measurement unit. The 32KHz clock is used as the calibration clock for the high-speed clock and the delay clock for the analog part.

4.1. High-speed Oscillator

The high-speed oscillator of MS1030 mainly provides the basic clock for time measurement, pulse frequency, and temperature measurement. The frequency range is 1-8MHZ. Users can choose the frequency of the oscillator according to their application conditions. The recommended high-speed clock frequency is 4Mhz. High-speed oscillator can be connected to passive or active oscillator. With connection as shown below:

Self-vibration External input method

The high-speed oscillator is started by default, and the average operating current is 260 μ A in the state of constant start-up. However, the crystal oscillator only needs to be turned on when measuring time, so the high-speed oscillator can control the turn-on time through the internal circuit. This is achieved by setting the parameter START_CLKHS. When setting START_CLKHS > 1, the crystal oscillator will be turned on in the measurement after sending Start_TOF, Start_TOF_Restart, Start_Temp or Start_Temp_Restart command. Set a delay between turning on the crystal and measuring to ensure that the crystal has enough time to oscillate to full amplitude. The user sets the start time according to the crystal used. For the specific start time of the crystal, see the previous parameter table.

START_CLKHS = 0 Oscillation off

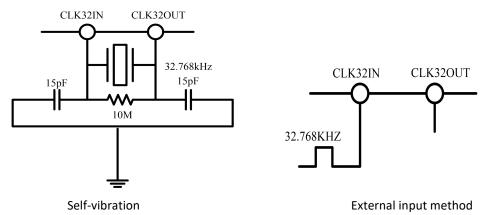
= 1 Oscillation continues to turn on

= 2 Delay 480 µs

= 3 Delay 1.46 ms

= 4 Delay 2.44 ms

= 5 to 7 Delay 5.14 ms


The delay set above can ensure the crystal has fully reached its full amplitude before the measurement starts. A delay of 480 μ s is sufficient for a ceramic crystal. In this way the current consumption can be greatly reduced.

4.2. 32.768kHz Oscillator

The MS1030 has a built-in 32.768KHz reference clock, which can be used to control high-speed clock start-up and clock calibration. It can also be used as a clock driver. Set SEL_TST01 and SEL_TST02 through register 0 to output the clock from TST01 and SEL_TST02. If the 32.768 kHz oscillator is always working, the current consumption at 3V is about $4 \mu A$. Input mode current consumption is about $0.5 \mu A$.

The specific connection method is as follows:

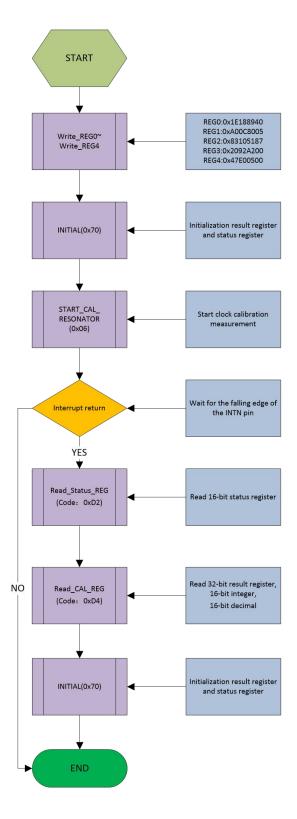
This low-power clock can be output to an external microcontroller as a clock source through the pin.

The setting of the register is:

SEL TSTO1 = 3: 32 kHz at TSTO1 pin output

SEL_TSTO2 = 3: 4 kHz (32kHz / 8) at TSTO2 pin output

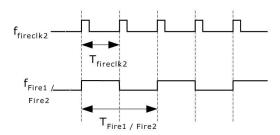
4.3. Calibrating High-Speed Ceramic Oscillators


Due to the low cost and fast startup of 1-8MHz ceramic oscillators, this oscillator is still very popular for low power consumption products, but it has a large error (0.3-0.5%) and has obvious temperature drift. Therefore, the MS1030 will perform clock calibration measurements to compensate for errors caused by the ceramic oscillator. The measurement is based on an accurate 32.768kHz clock. The MS1030 draws the Star / Stop pulse from the 32.768kHz clock and starts the TDC unit to measure the time difference. The result is stored in the Read_CAL_REG result register and the interrupt flag is set. The microcontroller can read this result and calculate the frequency error of the ceramic oscillator.

In the MS1030 clock calibration, 8 cycles of 32.768kHz are used as the calibration time, then the 8 cycle time is $1 / 32.768kHz \times 8 = 244.140625uS$. If a high-speed clock of 4MHz is used, the theoretical result should be 244.140625uS / 250ns = 976.5625, and then compare the value of the Read_CAL_REG (high 16-bit integer, low 16-bit decimal) register with the theoretical value, and the coefficient obtained is the clock calibration coefficient.

In an ultrasonic flowmeter, the measurement result consists of two one-way propagation time measurements of ultrasonic wave propagation in the fluid and countercurrent propagation. The flow rate of the fluid can be calculated according to the time difference between the ultrasonic countercurrent propagation and the cocurrent propagation. In order to avoid the influence of the calibration clock jitter on the measurement result, the same calibration value must be used when measuring the forward flow time and the reverse flow time.

4.4. Clock Calibration Process



5. Pulse Generator

5.1. Pulse Generator Overview

This frequency is divided internally, and it can also be divided by a factor of 2-64 freely. It can generate 1-127 pulse sequences and activate the trigger pulse generator by sending the code Start_Cycle.

The pulse generator provides two output ports, FIRE_UP and FIRE_DOWN. The driving capability of each output is 3.3mA at 3.3V. In addition, each output signal can be inverted to double the signal amplitude. The output pins can be individually set to high impedance. In addition, the default inactive buffer can be set to GND.

5.2. Register Configuration

Number of Pulses:

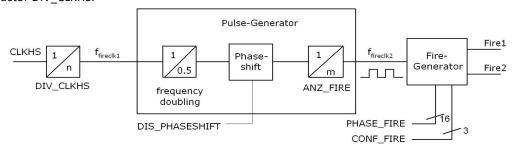
ANZ FIRE = 0 Turn off the pulse generator

= 1 1 pulse

...

= 2 2 pulses ...

= 127 127 pulses


SEL START FIRE = 1 Fire pulse directly to TDC START signal

FIREO_DEF = 0 The default status is High_Z

> = 1 The default state is GND. If you use the internal analog part, you must set it this way. The application recommends an external circuit with R and C.

Frequency of Pulse Emission:

The input signal fireclk1 of the pulse generator is derived from the high-speed clock CLKHS and the selected division factor DIV_CLKHS.

The frequency of the reference clock is first doubled internally, and then divided by DIV_FIRE. The lowest frequency is divided to 64, which can meet some low-frequency transducers such as gas.

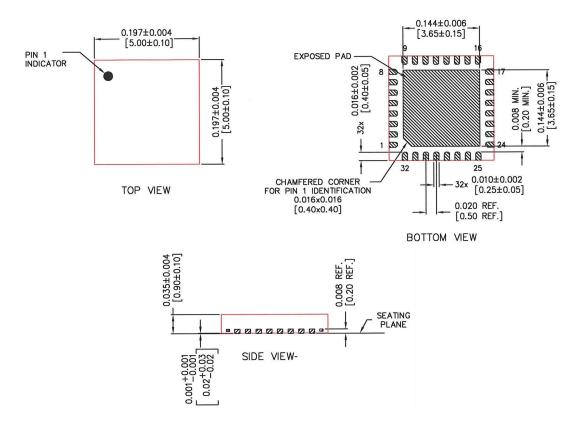
VERSION: 1.2

DIV FIRE = 0 Not allowed = 1 Divide by 2 = 63 Divide by 64

Output Driver:

The output driver can be set in Bits 29-31 (CONF_FIRE) in Register 4:

Bit 31 = 1 FIRE BOTH (Reverse on FIRE DOWN signal)


Bit 30 = 1 FIRE_Up Open

Bit 29 = 2 FIRE_Down Open

PACKAGE OUTLINE DIMENSIONS

QFN32

MARKING and PACKAGING SPECIFICATIONS

1. Marking Drawing Description

Product Name: MS1030 Product Code: XXXXXXX

2. Marking Drawing Demand

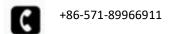
Laser printing, contents in the middle, font type Arial.

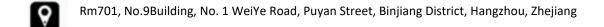
3. Packaging Specification

De	evice	Package	Piece/Reel	Reel/Box	Piece /Box	Box/Carton	Piece/Carton
MS1	1030	QFN32	1000	8	8000	4	32000

STATEMENT

- All Revision Rights of Datasheets Reserved for Ruimeng. Don't release additional notice.
 Customer should get latest version information and verify the integrity before placing order.
- When using Ruimeng products to design and produce, purchaser has the responsibility to observe safety standard and adopt corresponding precautions, in order to avoid personal injury and property loss caused by potential failure risk.
- The process of improving product is endless. And our company would sincerely provide more excellent product for customer.





MOS CIRCUIT OPERATION PRECAUTIONS

Static electricity can be generated in many places. The following precautions can be taken to effectively prevent the damage of MOS circuit caused by electrostatic discharge:

- 1. The operator shall ground through the anti-static wristband.
- 2. The equipment shell must be grounded.
- 3. The tools used in the assembly process must be grounded.
- 4. Must use conductor packaging or anti-static materials packaging or transportation.

